High-Order Contrasts for Independent Component Analysis
نویسندگان
چکیده
Given an n × 1 random vector X, independent component analysis (ICA) consists of finding a basis of Rn on which the coefficients of X are as independent as possible (in some appropriate sense). The change of basis can be represented by an n × n matrix B and the new coefficients given by the entries of vector Y = BX. When the observation vector X is modeled as a linear superposition of source signals, matrix B is understood as a separating matrix, and vector Y = BX is a vector of source signals. Two key issues of ICA are the definition of a measure of independence and the design of algorithms to find the change of basis (or separating matrix) B optimizing this measure. Many recent contributions to the ICA problem in the neural network literature describe stochastic gradient algorithms involving as an essential device in their learning rule a nonlinear activation function. Other ideas for ICA, most of them found in the signal processing literature, exploit the algebraic structure of high-order moments of the observations. They are often regarded as being unreliable, inaccurate, slowly convergent, and utterly sensitive to outliers. As a matter of fact, it is fairly easy to devise an ICA method displaying all these flaws and working on only carefully generated synthetic data sets. This may be the reason that cumulant-based algebraic methods are largely ignored by the researchers of the neural network community involved in ICA. This article tries to correct this view by showing how high-order correlations can be efficiently exploited to reveal independent components. This article describes several ICA algorithms that may be called Jacobi algorithms because they seek to maximize measures of independence by a technique akin to the Jacobi method of diagonalization. These measures of independence are based on fourth-order correlations between the entries of Y. As a benefit, these algorithms evades the curse of gradient descent:
منابع مشابه
Independent component analysis with sinusoidal fourth-order contrasts
ABSTRACT The authors propose a new solution to the Independent Component Analysis (ICA) problem. In the two-dimensional case, we prove that under the whiteness constraint some fourth-order contrasts may be approximated by a sinusoid. Thus, the minimization of the contrast reduces to computing its phase. The novel approach, called SICA (Sinusoidal ICA), uses the ’Jacobi optimization’ to cope wit...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملAdaptive Initialized Jacobi Optimization in Independent Component Analysis
In this paper, we focus on the fourth order cumulant based adaptive methods for independent component analysis. We propose a novel method based on the Jacobi Optimization, available for a wide set of minimum entropy (ME) based contrasts. In this algorithm we adaptively compute a moment matrix, an estimate of some fourth order moments of the whitened inputs. Starting from this matrix, the soluti...
متن کاملEfficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions
Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...
متن کاملMinimum Support ICA Using Order Statistics. Part II: Performance Analysis
Linear instantaneous independent component analysis (ICA) is a well-known problem, for which efficient algorithms like FastICA and JADE have been developed. Nevertheless, the development of new contrasts and optimization procedures is still needed, e.g. to improve the separation performances in specific cases. For example, algorithms may exploit prior information, such as the sparseness or the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003